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Covarianees of Thermal Parameters and their Effect on Rigid-Body Calculations 
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An isotropic approximation is developed for the covariance matrix of atomic vibration components in 
an arbitrary coordinate system. The effect of alternative treatments of these covariances on derived 
rigid-body vibration parameters is illustrated by a numerical comparison. Serious errors may result from 
neglect of the correlations between different components of the vibration tensors U if these are referred 
to non-orthogonal axes. 

Atomic vibration parameters deduced from crystal- 
lographic studies are often regarded, if at all, mainly as 
input data for the derivation of related quantities, such 
as the parameters of rigid-body molecular motion 
(Cruickshank, 1956; Schomaker & Trueblood, 1968) 
or of other kinds of postulated behaviour (e.g. Busing 
& Levy, 1964). If a specified model of vibrational 
behaviour is assumed to account fully for the observed 
atomic motions, the relevant amplitudes can be ob- 
tained more directly through the introduction of ap- 
propriate constraints in the crystallographic refine- 
ment model (Pawley, 1964, 1971). But crystallographers 
more commonly refine their structures without such 
constraints, leaving the atomic vibration parameters so 
derived to be tested subsequently for compatability 
with whatever model or models may suggest themselves. 

However, it seems that in the application of this 
two-stage procedure, the need to take proper account 
of the statistical correlations among the several atomic 
vibration components (Scheringer, 1966) may be 
inadequately recognized. Since these atomic parameters 
U ij are all derived jointly from the same set of experi- 
mental data, it is certainly inappropriate, and may 
sometimes by severely misleading, to disregard their 
covariances when they are used for the subsequent 
derivation of molecular vibration parameters. It is 
therefore pertinent to examine when such neglect is 
likely to cause trouble, which are the important co- 
variances, and how these may be included. 

The explicit inclusion of the full covariance matrix 
should pose no problem when the entire study is per- 
formed by a single team, provided a suitable computer 
routine is available that accepts a non-diagonal weight 
matrix. Difficulties may arise, however, when one group 
attempts to fit a vibration model to atomic thermal 
parameters published by a distant laboratory (e.g. 
Burns, Ferrier & McMullan, 1967, 1968; Schomaker & 
Trueblood, 1968; Forder, 1971), since published re- 
ports, while they customarily include estimated 

variances of the least-squares parameters, never record 
their covariances. 

In such a situation the lack of published covariances 
may seem to justify the naive assumption of a diagonal 
covariance matrix. Unfortunately, such an assumption 
can lead to quite spurious conclusions, especially if 
the atomic vibration tensors U are referred to non- 
orthogonal crystal axes. At the very least it may be 
advisable to transform the U ~i to an orthogonal co- 
ordinate system, in which the neglect of covariances is 
likely to cause less trouble (see below). But even sucb 
a transformation requires some approximations since 
ignorance of the covariances, in the non-orthogonal 
system, precludes the explicit evaluation even of the 
diagonal variances in any chosen orthogonal system. 

A better approximation, of rather wide applicability, 
may be derived quite simply. In general we call safely 
neglect the variances of the atomic coordinates, since 
these are almost invariably too small to influence the 
molecular vibration parameters appreciably. Second, 
we can usually neglect the covariances between vibra- 
tion parameters of crystallographically independent 
atoms. Thus, we assume the covariance matrix of the 
least-squares parameters to consist effectively of sepa- 
rate 6 x 6 atomic blocks, comprising the covariances 
among the several components U ~J of each atom. 
(Nevertheless, if a vibrating unit assumed in our model 
spans two or more asymmetric units and our computer 
routine demands the explicit introduction of the param- 
eters of symmetry-related atoms, then the covariances of 
these must likewise be included explicitly.) When no 
contrary information is available about the form of 
these blocks, a reasonable assumption is that the 
variances and covariances are isotropic, i.e. that the 
covariance cov(Up, U,) between the mean square 
vibration amplitudes in directions p and q depends 
only on the angle between these two directions. With 
this assumption, the 21 independent elements of the 
6 x 6 atomic covariance matrix are determined by two 
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independent quantities. These may conveniently be 
taken as S, the (isotropic) variance of the mean square 
amplitude U; and r/, the correlation coefficient between 
mutually perpendicular mean-square amplitudes. In a 
Cartesian coordinate system, the atomic covariance 
matrix then has the form (see, e.g., Jeffreys, 1961) 

In accordance with Cruickshank's (1956) original 
definition of U tl, we have taken the transformed 
reference axes at to be dimensionless, being related to 
the crystal axes at by the simple proportionality 

a l = l a * l a ,  az=lb*lb,  aa=lc*le 

U,'o5 U,2o2, U~o ~, 
Uc~ S 
U ~:g) rtS S 
u~]~ ~S ~S S 

u~g, o o o 

U c~ 0 0 0 

u~ ,  o o o 

To obtain the corresponding covariances in a non- 
orthogonal system, we may make use of the fact that 
the covariance matrix of the tensor components U ~s 
transforms, under a change of axes, as the outer 
product (Margenau & Murphy, 1943) of the tensor 
U ts with itself. We may thus rewrite the 6 x 6 matrix (1) 
above as a fourth-rank tensor, having the 81 totally 
contravariant components 

•ijkl t j  k l  co~ =cov (Uco, Uco~). 

This tensor can then be transformed to any other coor- 
dinate system by standard, if tedious, tensor algebra. 
To obtain the most general form in an arbitrary crystal- 
lographic axial system we may transform, for example, 
to triclinic axes oriented with_ the a* and b directions 
parallel, respectively, to the x and y axes of the original 
Cartesian system. This transformation converts the 
tensor ,,~m into /(o) 

,,tjk, BI' Bf  BI" =/ (0)  

where the postfactor matrix B is given by 

[ i  cos y* s fl*] B= 0 ;o 
a sin fl* J 

with 

Q = (1 - cos 2 a* - cos z fl* - cos 2 ),* + 2 cos a* 

x cos fl* cos y*)m/sin fl*, 

a=(cos  a * - c o s  fl* cos ~*)/sin fl*. 

After transformation the new tensor ~/ can be com- 
pressed back to yield the symmetric 6 x 6 covariance 
matrix of the transformed vibration components U tJ. 

Alternatively, the initial matrix (1), as it stands, can 
be multiplied twice (rather than four times) by a 6 x 6 
transformation matrix derivable from the elements of 
B, as shown by Scheringer (1966). 

By either route, the general form of the isotropic 
covariance matrix is found to be matrix (2) (Table 1). 

U,lo 2, U,2o3, V,~o ~, 

(sym.) 

l - - r /  S 
2 

0 

0 

l - r /  S 
2 
0 l - - r /  S 

2 

(1) 

(Hirshfeld & Rabinovich, 1966; Cruickshank, 1971). 
If, instead, the atomic vibration parameters are chosen 
as 

fltS=la q I # I U  ~1 , 

so that the temperature factor has the form 

rather than 
exp ( -  2rcZhthjfl is) 

exp ( - 2rdh~hsla q laJl U t j) 

then every element ytjkt of the covariance matrix (2) 
above must be multiplied by the corresponding factor 
lail laS[ lakl la/I. 

This isotropic covariance matrix (2), which simplifies 
materially if any of the reference axes are orthogonal, 
may be used in several ways. If the complete covariance 
matrix is available from the least-squares refinement, 
comparison with the standard matrix above will show 
how closely the least-squares results support the as- 
sumption of isotropic covariances. If only the diagonal 
variances are available, these may be examined similar- 
ly and, if the indicated assumption seems appropriate, 
may be used to provide estimates of the quantities S 
and r/ for evaluation of the full covariance matrix. 
Finally, if even the variances are lacking, plausible 
estimates of S and r/may still be found for insertion in 
subsequent computations. Since only relative values 
of S for the several atoms are required, it suffices to 
assume, for example, that these vary inversely with 
the square of the atomic number Z. An appropriate 
value for r/, valid under many circumstances, may be 
deduced from a statistical argument given by Scherin- 
ger (1966). 

This argument assumes that the diffraction data, 
from which the vibration parameters have been derived, 
are distributed, in quantity and quality, isotropically 
in reciprocal space. It further supposes that the atomic 
vibration tensors themselves are approximately iso- 
tropic. In an orthogonal coordinate system (which may 
be adopted for the present argument whether or not 
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it conforms to the conventional unit cell for a particu- 
lar crystal) each atomic thermal-parameter block of the 
least-squares normal matrix is then found to be approx- 
imately proportional to 

I3 1 1 3 
1 1 3 (sym.) 
0 0 0 4 
0 0 0 0 4 
0 0 0 0 0 4 

This can be inverted to yield a matrix that is approxim- 
ately proportional to the corresponding 6 x 6 block 
of the covariance matrix. The latter is seen to have the 
form, in an orthogonal coordinate system, 

-¼s s 
- ¼ S  - ¼ S  S (sym.) 

0 0 0 ~-s 
0 0 0 0 ~ s  
0 0 0 0 0 ~ s  . 

Comparing with expression (1), we find that the quan- 
tity t/takes the value 

r / = - ¼  

under the indicated statistical assumptions. This, then, 
is the recommended value to be substituted in expres- 
sion (2), for an arbitrary coordinate system, when no 
better information is available. 

The significance of these general arguments is best 
illustrated by a concrete example. Accordingly, the 
following results demonstrate the effect on computed 
rigid-body parameters of  alternative assumptions 
about the variances and covariances of  the input 
atomic vibration components U u. The reported com- 
putations all begin with the same atomic parameters, 
obtained by least-squares refinement of  benzothieno 
benzothiophene disulphone, (Goldberg & Shmueli, 
1971). The molecule occupies a general position in 
space group P2~/e and the monoclinic fl angle is 116-8 °. 
Six alternative computations were performed to fit a 
'best' set of molecular rigid-body parameters to the 120 
independent vibration components U u of the 20 non- 
hydrogen atoms in the molecule. For each computation, 
Table 2 presents the calculated components of  the 
molecular translation and libration tensors T and L, 
as well as the coordinates x~ of the origin of the libra- 
tion tensor measured from the molecular centre of  
mass. All quantities are referred to a Cartesian coor- 
dinate system defined by the molecular principle 
moments of  inertia. 

The agreement attained between input and calculated 
values of  U u was virtually identical for all six computa- 
tions. A simple measure of this agreement is provided 
by the root-mean-square weighted discrepancy 
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Table 2. Rigid-body parameters derived for test molecule with alternative assumed eovariances of  input atomic U tJ 

Translation components T~, in A 2 x 10 -4, libration components L~j, in rad z x 10 -4, coordinates xt of libration origin, in A, all 
referred to molecular inertial axes. Last column lists estimated standard deviations, in the same units, derived from calculation 3. 

Calculation 1 2 3/5 4 6 o- 
Model T,L,S T,L,x T,L,x T,L,x T,L,x 
Coordinate axes Orthogonal Orthogonal Orthog/Monocl. Monoclinic Monoclinic 
Covariance Isotropic Isotropic 

matrix Unit matrix Unit matrix r/= -¼ Unit matrix r/= 0 
Tn 328 330 333 327 332 15 
T22 270 268 267 266 270 18 
Ts3 260 259 235 158 247 24 
Tl2 --1 --2 --3 --4 --3 11 
T23 --11 --11 --11 --4 --11 16 
Tls 24 21 19 15 20 13 
Lit 35 33 39 44 35 4 
L22 10 11 12 22 12 2 
L3a 20 20 20 21 20 2 
Lt2 --3 --3 --4 --5 --4 2 
L2s --3 - -4  --4 --3 --4 2 
Lta 5 3 2 1 3 2 
xt 0"58 0"54 0"57 0"45 0"52 0" 11 
x2 1"02 1"08 1"01 1"02 1"04 0"09 
xa 0"02 -0"11 -0-10 -0"04 -0"13 0"14 

where w is the statistical weight 

w oc l /er2( U tJ) 

assigned to the input value of U ~. Values of r for the 
several computations fell consistently between 0.0051 
and 0.0053 A 2. For comparison, estimates of er(U t J) 
from the crystallographic least-squares matrix were 
mainly in the range 0.002 to 0.003 A 2. A quantity 
analogous to r but based on the full weight matrix 
leads to estimates of the standard deviations of the 
derived rigid-body parameters if it is assumed that the 
weight matrix used is an appropriate one and that the 
molecule in fact behaves as a rigid body. Such estimates, 
derived from computation 3, are listed in the last 
column of Table 2. They provide a yardstick against 
which to gauge the differences among the several com- 
putations. 

The first computation, reported in column 1, was 
based on the three-tensor model of Schomaker & 
Trueblood (1968). The input atomic vibration tensors 
were first transformed to the inertial axes and, in this 
coordinate system, all 120 quantities U ~j were assigned 
unit weights, zero correlations. A linear least-squares 
calculation determined 6 components of the symmetric 
tensor T, 6 of L, and 8 of the screw tensor S. These 
three tensors were then referred to a new origin, 
having the listed coordinates x~, chosen to make S 
symmetric and the trace of T minimal. Referred to 
this new origin, none of the calculated components of 
S differed significantly from zero and their values are 
omitted from Table 2. 

That the symmetrized tensor S is indeed of  negligible 
significance is confirmed by the second computation. 
Here, the input data were treated in exactly the same 
way but the rigid-body computation was based on 
Cruickshank's (1956) two-tensor model, in which S is 
constrained to zero. However, the coordinates x~ of the 

centre of  libration were treated as freely adjustable 
parameters (Hirshfeld, Sandler & Schmidt, 1963). The 
results, reported in column 2, as well as the r.m.s. 
discrepancy r, are scarcely distinguishable f rom those 
of the previous computation, indicating that for this 
structure the 15-parameter T, L, x model may be 
safely substituted for the more elaborate 20-parameter 
T, L, S model of Schomaker & Trueblood (1968). For 
simplicity, all remaining compari,~ons are limited to the 
T, L, x model. 

Column 3 reports a calculation in which the unit 
covariance matrix was replaced by the more defensible 
expression (1), with 17=-¼, all 20 atoms being again 
weighted equally. The results differ but slightly from 
those of the two previous calculations. We conclude 
that in an orthogonal coordinate system neither the 
neglect of  the perpendicular correlations r/ nor the 
assignment of equal variances to mixed and unmixed 
components Urn-neglecting the factor (1-r / ) /2  in ex- 
pression (1) - is of serious consequence. The latter 
approximation implies variances that, while not quite 
isotropic, are nevertheless highly symmetric, with equal 
minima in the directions of the three coordinate axes. 

The last three calculations were performed in the 
non-orthogonal crystal axial system. All quantities 
were transformed, after computation, to the molecular 
inertial axes for direct comparison with the previous 
results. In column 4 are results obtained with a unit 
covariance matrix, as for computations 1 and 2. Here, 
however, such a covariance matrix is highly unsuitable 
because of the very oblique monoclinic fl angle. The 
results, accordingly, differ from those of all previous 
calculations, producing an unreasonably anisotropic 
translation tensor T and anomalously large values of 
the libration components LI~ and L2z. 

In the next computation the variance matrix was 
taken from expression (2), as simplified by the mono- 



652 C O V A R I A N C E S  OF T H E R M A L  P A R A M E T E R S  

clinic symmetry, with r/= - ¼. The results, not tabulated 
separately, exactly duplicated those of column 3, 
confirming that the matrices (1) and (2) define strictly 
corresponding covariances in the two coordinate sys- 
tems. They also verify that tbe rigid-body computation 
yields identical results in different coordinate systems 
provided the covariances of the input parameters are 
specified concordantly. 

A final computation, reported in column 6, assumed 
r /=0 instead of -J4- in expression (2). The results are 
substantially identical with those of the previous cal- 
culation, supporting the earlier indication (comparison 
of columns 2 and 3) that neglect of the perpendicular 
correlations q makes no great difference. 

These numerical comparisons appear to justify the 
following generalizations: 

(a) The use of the covariance matrix given by expres- 
sion (2) yields results that are strictly independent of 
the coordinate system in which the atomic vibration 
components U iJ are expressed. 

(b) Neglect of all covariances and equal weighting 
of U u and U ~J (iq, j ) ,  while not strictly justifiable, are 
both relatively harmless approximations in an ortho- 
gonal axial system. 

(c) The most serious error to be avoided is the neg- 
lect of those covariances that arise in a non-orthogonal 
system, regardless of the value assigned to r/, because of 
the obliquity of the reference axes. 

(d) The agreement between observed and calculated 
values of U ~j, as measured by the r.m.s, discrepancy r, 
cannot be relied upon to distinguish between a good 
and a bad weight matrix. 

The calculations reported above pertain to a struc- 
ture whose experimental thermal parameters fit the 
rigid-molecule hypothesis rather poorly, having been 
chosen to emphasize the effects of alternative weighting 
procedures. Similar calculations have been performed 
on the data for 1,4, 5, 8-tetraoxadecalin (Fuchs, Gold- 
berg & Shmueli, 1972), whose thermal parameters con- 
form closely to the rigid-body model. In this structure, 
changes in the assumed covariance matrix, based on 
alternative choices of unit-cell axes differing widely 
in obliquity, had relatively little effect on the derived 
rigid-body parameters. In general, the sensitivity of 

the rigid-body parameters to the weighting procedure 
adopted is likely to depend, not only on the magnitudes 
of the discrepancies between experimental and calcu- 
lated U ~j, but also on the relative contribution~ to 
these discrepancies of random experimental errors, 
systematic errors, intramolecular vibrations, and other 
deficiencies in our refinement model. 

Our discussion is not meant to imply that an iso- 
tropic covariance matrix is always appropriate or, for 
that matter, that we may invariably neglect statistical 
correlations between the thermal parameters of dif- 
ferent atoms in the asymmetric unit. What is suggested 
is that, in the absence of complete information, such 
an approximation is often less dangerous than various 
alternatives having even less physical justification. 

We are grateful to Dr G. S. Pawley and to Dr R. E. 
Marsh for pertinent suggestions leading to an improved 
presentation of this discussion. 
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